All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dimensionality Reduction and Prediction of the Protein Macromolecule Dissolution Profile

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092534" target="_blank" >RIV/61989100:27240/14:86092534 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/14:86092534

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-08156-4_30" target="_blank" >http://dx.doi.org/10.1007/978-3-319-08156-4_30</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-08156-4_30" target="_blank" >10.1007/978-3-319-08156-4_30</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dimensionality Reduction and Prediction of the Protein Macromolecule Dissolution Profile

  • Original language description

    A suitable regression model for predicting the dissolution profile of Poly (lactic-co-glycolic acid) (PLGA) micro- and nanoparticles can play a significant role in pharmaceutical/medical applications. The rate of dissolution of proteins is influenced byseveral factors and taking all such influencing factors into account, we have a dataset in hand with three hundred input features. Therefore, a primary approach before identifying a regression model is to reduce the dimensionality of the dataset at hand.On the one hand, we have adopted Backward Elimination Feature selection techniques for an exhaustive analysis of the predictability of each combination of features. On the other hand, several linear and non-linear feature extraction methods are used inorder to extract a new set of features out of the available dataset. A comprehensive experimental analysis for the selection or extraction of features and identification of corresponding prediction model is offered. The designed experimen

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. Volume 303

  • ISBN

    978-3-319-08155-7

  • ISSN

    2194-5357

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    301-310

  • Publisher name

    Springer-Verlag Berlin Heidelberg

  • Place of publication

    Berlin Heidelberg

  • Event location

    Ostrava

  • Event date

    Jun 23, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article