All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Prediction of Oil Prices Using Bagging and Random Subspace

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092535" target="_blank" >RIV/61989100:27240/14:86092535 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/14:86092535

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-08156-4_34" target="_blank" >http://dx.doi.org/10.1007/978-3-319-08156-4_34</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-08156-4_34" target="_blank" >10.1007/978-3-319-08156-4_34</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Prediction of Oil Prices Using Bagging and Random Subspace

  • Original language description

    The problem of predicting oil prices is worthy of attention. As oil represents the backbone of the world economy, the goal of this paper is to design a model, which is more accurate. We modeled the prediction process comprising of three steps: feature selection, data partitioning and analyzing the prediction models. Six prediction models namely: Multi-Layered Perceptron (MLP), Sequential Minimal Optimization for regression (SMOreg), Isotonic Regression, Multilayer Perceptron Regressor (MLP Regressor), Extra-Tree and Reduced Error Pruning Tree (REPtree). These prediction models were selected and tested after experimenting with other several most widely used prediction models. The comparison of these six algorithms with previous work is presented based on Root mean squared error (RMSE) to find out the best suitable algorithm. Further, two meta schemes namely Bagging and Random subspace are adopted and compared with previous algorithms using Mean squared error (MSE) to evaluate performance. Experimental evidence illustrate that the random subspace scheme outperforms most of the existing techniques. Springer International Publishing Switzerland 2014.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. Volume 303

  • ISBN

    978-3-319-08155-7

  • ISSN

    2194-5357

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    343-354

  • Publisher name

    Springer-Verlag Berlin Heidelberg

  • Place of publication

    Berlin Heidelberg

  • Event location

    Ostrava

  • Event date

    Jun 23, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article