All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Big data spectra analysis using analytical programming and random decision forests

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092546" target="_blank" >RIV/61989100:27240/14:86092546 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/14:86092546

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-662-45237-0_26" target="_blank" >http://dx.doi.org/10.1007/978-3-662-45237-0_26</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-662-45237-0_26" target="_blank" >10.1007/978-3-662-45237-0_26</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Big data spectra analysis using analytical programming and random decision forests

  • Original language description

    Spectra analysis on large datasets is in focus of this paper. First of all we discuss a method useful for spectra analysis - analytical programming and its implementation. Our goal is to create mathematical formulas of emission lines from spectra, whichare characteristic for Be stars. One issue in performing this task is symbolic regression, which represents the process in our application, when measured data fits the best represented mathematical formula. In past this was only a human domain; nowadays,there are computer methods, which allow us to do it more or less effectively. A novel method in symbolic regression, compared to genetic programming and grammar evolution, is analytic programming. The aim of this work is to verify the efficiency of theparallel approach of this algorithm, using CUDA architecture. Next we will discuss parallel implementation of random decision forest (RDF) to classify huge amounts of various spectra. The mathematical formulas obtained via AP will be used

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science. Volume 8838

  • ISBN

    978-3-662-45236-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    266-277

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Ho Chi Minh City

  • Event date

    Nov 5, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article