A New Hybrid Particle Swarm Optimization with Variable Neighborhood Search for Solving Unconstrained Global Optimization Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092554" target="_blank" >RIV/61989100:27240/14:86092554 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/14:86092554
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-08156-4_16" target="_blank" >http://dx.doi.org/10.1007/978-3-319-08156-4_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-08156-4_16" target="_blank" >10.1007/978-3-319-08156-4_16</a>
Alternative languages
Result language
angličtina
Original language name
A New Hybrid Particle Swarm Optimization with Variable Neighborhood Search for Solving Unconstrained Global Optimization Problems
Original language description
Over the past few decades, metaheuristics have been emerged to combine basic heuristic techniques in higher level frameworks to explore a search space in an efficient and an effective way. Particle swarm optimization (PSO) is one of the most important method in meta- heuristics methods, which is used for solving unconstrained global optimization prblems. In this paper, a new hybrid PSO algorithm is combined with variable neighborhood search (VNS) algorithm in order to search for the global optimal solutions for unconstrained global optimization problems. The proposed algorithm is called a hybrid particle swarm optimization with a variable neighborhood search algorithm (HPSOVNS). HPSOVNS aims to combine the PSO algorithm with its capability of making wide exploration and deep exploitation and the VNS algorithm as a local search algorithm to refine the overall best solution found so far in each iteration. In order to evaluate the performance of HPSOVNS, we compare its performance on nine different kinds of test benchmark functions with four particle swarm optimization based algorithms with different varieties. The results show that HPSOVNS algorithm achieves better performance and faster than the other algorithms. Springer International Publishing Switzerland 2014.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Intelligent Systems and Computing. Volume 303
ISBN
978-3-319-08155-7
ISSN
2194-5357
e-ISSN
—
Number of pages
10
Pages from-to
151-160
Publisher name
Springer-Verlag Berlin Heidelberg
Place of publication
Berlin Heidelberg
Event location
Ostrava
Event date
Jun 23, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000342841800016