All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An adaptive PID neural network for complex nonlinear system control

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092746" target="_blank" >RIV/61989100:27240/14:86092746 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/14:86092746

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.neucom.2013.03.065" target="_blank" >http://dx.doi.org/10.1016/j.neucom.2013.03.065</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.neucom.2013.03.065" target="_blank" >10.1016/j.neucom.2013.03.065</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An adaptive PID neural network for complex nonlinear system control

  • Original language description

    Usually it is difficult to solve the control problem of a complex nonlinear system. In this paper, we present an effective control method based on adaptive PID neural network and particle swarm optimization (PSO) algorithm. PSO algorithm is introduced toinitialize the neural network for improving the convergent speed and preventing weights trapping into local optima. To adapt the initially uncertain and varying parameters in the control system, we introduce an improved gradient descent method to adjustthe network parameters. The stability of our controller is analyzed according to the Lyapunov method. The simulation of complex nonlinear multiple-input and multiple-output (MIMO) system is presented with strong coupling. Empirical results illustrate that the proposed controller can obtain good precision with shorter time compared with the other considered methods.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neurocomputing

  • ISSN

    0925-2312

  • e-ISSN

  • Volume of the periodical

    135

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    7

  • Pages from-to

    79-85

  • UT code for WoS article

    000335871200010

  • EID of the result in the Scopus database