All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Universal approximation propriety of Flexible Beta Basis Function Neural Tree

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092816" target="_blank" >RIV/61989100:27240/14:86092816 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/14:86092816

  • Result on the web

    <a href="http://dx.doi.org/10.1109/IJCNN.2014.6889671" target="_blank" >http://dx.doi.org/10.1109/IJCNN.2014.6889671</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IJCNN.2014.6889671" target="_blank" >10.1109/IJCNN.2014.6889671</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Universal approximation propriety of Flexible Beta Basis Function Neural Tree

  • Original language description

    In this paper, the universal approximation propriety is proved for the Flexible Beta Basis Function Neural Tree (FBBFNT) model. This model is a tree-encoding method for designing Beta basis function neural network. The performance of FBBFNT is evaluatedfor benchmark problems drawn from time series approximation area and is compared with other methods in the literature. 2014 IEEE.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the International Joint Conference on Neural Networks

  • ISBN

    978-1-4799-1484-5

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    573-580

  • Publisher name

    Institute of Electrical and Electronics Engineers

  • Place of publication

    New York

  • Event location

    Beijing

  • Event date

    Jul 6, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article