All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fuzzy c-means with wavelet filtration for MR image segmentation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092828" target="_blank" >RIV/61989100:27240/14:86092828 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/14:86092828

  • Result on the web

    <a href="http://dx.doi.org/10.1109/NaBIC.2014.6921884" target="_blank" >http://dx.doi.org/10.1109/NaBIC.2014.6921884</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/NaBIC.2014.6921884" target="_blank" >10.1109/NaBIC.2014.6921884</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fuzzy c-means with wavelet filtration for MR image segmentation

  • Original language description

    In this paper, we present an image segmentation technique based on fuzzy c-means (FCM) incorporated with wavelet domain noise filtration. With the use of image noise feature estimation composed of preliminary coefficient classification and wavelet domainindicator, a filter for balancing the preservation of relevant details against the degree of noise reduction can be created. The filter is further incorporated with FCM algorithm into the membership function for clustering. This approach allows FCM notonly to exploit useful spatial information, but also dynamically minimize clustering errors caused by common noise in medical images. Experimental results suggest its usefulness for reducing FCM clustering noise sensitivity. In MR image segmentation applications, the proposed method outperforms other FCM variations, in terms of quantitative performance measure and visual quality. 2014 IEEE.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NaBIC 2014 ; CASoN 2014 : July 30-31, Porto, Portugal

  • ISBN

    978-1-4799-5937-2

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    12-16

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Porto

  • Event date

    Jul 30, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article