Evolutionary Algorithm for Decision Tree Induction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86096554" target="_blank" >RIV/61989100:27240/14:86096554 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Evolutionary Algorithm for Decision Tree Induction
Original language description
Decision trees are among the most popular classification algorithms due to their knowledge representation in form of decision rules which are easy for interpretation and analysis. Nonetheless, a majority of decision trees training algorithms base on greedy top-down induction strategy which has the tendency to develop too complex tree structures. Therefore, they are not able to effectively generalise knowledge gathered in learning set. In this paper we propose EVO-Tree hybrid algorithm for decision tree induction. EVO-Tree utilizes evolutionary algorithm based training procedure which processes population of possible tree structures decoded in the form of tree-like chromosomes. Training process aims at minimizing objective functions with two components: misclassification rate and tree size. We test the predictive performance of EVO-Tree using several public UCI data sets, and we compare the results with various state-of-the-art classification algorithms. (C) IFIP International Federation for Information Processing 2014.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0016" target="_blank" >EE2.3.30.0016: Opportunities for young researchers</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science. Volume 8838
ISBN
978-3-662-45236-3
ISSN
0302-9743
e-ISSN
—
Number of pages
10
Pages from-to
23-32
Publisher name
Springer
Place of publication
Heidelberg
Event location
Ho Chi Minh City
Event date
Nov 5, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—