All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rough power set tree for feature selection and classification: Case study on MRI brain tumor

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86096560" target="_blank" >RIV/61989100:27240/14:86096560 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-01781-5_24" target="_blank" >http://dx.doi.org/10.1007/978-3-319-01781-5_24</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-01781-5_24" target="_blank" >10.1007/978-3-319-01781-5_24</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rough power set tree for feature selection and classification: Case study on MRI brain tumor

  • Original language description

    This article presents a feature selection and classification system for 2D brain tumors from Magnetic resonance imaging (MRI) images. The proposed feature selection and classification approach consists of four main phases. Firstly, clustering phase thatapplies the K-means clustering algorithm on 2D brain tumors slices. Secondly, feature extraction phase that extracts the optimum feature subset via using the brightness and circularity ratio. Thirdly, reduct generation phase that uses rough set based onpower set tree algorithm to choose the reduct. Finally, classification phase that applies Multilayer Perceptron Neural Network algorithm on the reduct. Experimental results showed that the proposed classification approach achieved a high recognition ratecompared to other classifiers including Naive Bayes, AD-tree and BF-tree. (C) Springer International Publishing Switzerland 2014.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/EE.2.3.20.0073" target="_blank" >EE.2.3.20.0073: Bio-Inspired Methods: research, development and knowledge transfer</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. Volume 237

  • ISBN

    978-3-319-01780-8

  • ISSN

    2194-5357

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    259-270

  • Publisher name

    Springer

  • Place of publication

    Basel

  • Event location

    Ostrava

  • Event date

    Aug 22, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article