Application of recursive least square algorithm to adaptive channel equalization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86095965" target="_blank" >RIV/61989100:27240/15:86095965 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Application of recursive least square algorithm to adaptive channel equalization
Original language description
This paper deals with modern wireless transmission systems. It focusses on real implementation of recursive least squares (RLS) channel equalizer into the system of software defined radio (SDR), in order to minimize the distance between the signal and SNR transmitting channel noise and then reduce the error rate of bit error rate (BER) transmission. The authors aimed to conduct a real measurement using universal software radio peripheral (USRP). Experimental results suggest that researched RLS equalizerembodies better BER values in comparison to commercially most common equalizers of the least mean square (LMS) algorithm group. Moreover, the conducted experiments show that the usage of the SDR conception is very suitable for testing new principles inchannel equalization field.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JB - Sensors, detecting elements, measurement and regulation
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IMEKO: XXI world congress : Prague 2015
ISBN
978-1-5108-1292-5
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
582-585
Publisher name
[s.n.]
Place of publication
[Česko]
Event location
Praha
Event date
Aug 30, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—