All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spam detection based on nearest community classifier

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096394" target="_blank" >RIV/61989100:27240/15:86096394 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/15:86096394

  • Result on the web

    <a href="http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7312096&newsearch=true&queryText=Spam%20detection%20based%20on%20nearest%20community%20classifier" target="_blank" >http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7312096&newsearch=true&queryText=Spam%20detection%20based%20on%20nearest%20community%20classifier</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/INCoS.2015.75" target="_blank" >10.1109/INCoS.2015.75</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spam detection based on nearest community classifier

  • Original language description

    Undesirable emails (spam) are increasingly becoming a big problem nowadays, not only for users, but also for Internet service providers. Therefore, the design of new algorithms detecting the spam is currently one of the research hot-topics. We define tworequirements and use them simultaneously. The first requirement is a low rate of falsely detected emails which has an impact on the algorithm performance. The second requirement is a fast detection of spams. It minimizes the delay in receiving emails. In this paper, we focus our effort on the first requirement. To solve this problem we applied network community analysis. The approach is to find communities-groups of same emails. In this paper, we present a new nearest community classifier and apply itin the field of spam detection. The obtained results are very close to Bayesian Spam Filter. We achieved 93.78% accuracy. The algorithm can detect 80.72% of spam emails and 98.01% non-spam emails.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Intelligent Networking and Collaborative Systems INCoS-2015 : 7th International Conference : proceedings : September 2-4, 2015, Taipei, Tchaj-wan

  • ISBN

    978-1-4673-7694-5

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    354-359

  • Publisher name

    IEEE

  • Place of publication

    Vienna

  • Event location

    Taipei

  • Event date

    Sep 2, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article