All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

2-DIMENSIONAL PRIMAL DOMAIN DECOMPOSITION THEORY IN DETAIL

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096468" target="_blank" >RIV/61989100:27240/15:86096468 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/15:86096468

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10492-015-0095-5" target="_blank" >http://dx.doi.org/10.1007/s10492-015-0095-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10492-015-0095-5" target="_blank" >10.1007/s10492-015-0095-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    2-DIMENSIONAL PRIMAL DOMAIN DECOMPOSITION THEORY IN DETAIL

  • Original language description

    We give details of the theory of primal domain decomposition (DD) methods for a 2-dimensional second order elliptic equation with homogeneous Dirichlet boundary conditions and jumping coefficients. The problem is discretized by the finite element method.The computational domain is decomposed into triangular subdomains that align with the coefficients jumps. We prove that the condition number of the vertex-based DD preconditioner is O((1 + log(H/h))(2)), independently of the coefficient jumps, where H and h denote the discretization parameters of the coarse and fine triangulations, respectively. Although this preconditioner and its analysis date back to the pioneering work J.H.Bramble, J. E.Pasciak, A.H. Schatz (1986), and it was revisited and extendedby many authors including M.Dryja, O.B.Widlund (1990) and A.Toselli, O.B.Widlund (2005), the theory is hard to understand and some details, to our best knowledge, have never been published. In this paper we present all the proofs in deta

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applications of Mathematics

  • ISSN

    0862-7940

  • e-ISSN

  • Volume of the periodical

    60

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    19

  • Pages from-to

    265-283

  • UT code for WoS article

    000361346700003

  • EID of the result in the Scopus database

    2-s2.0-84941953368