2-DIMENSIONAL PRIMAL DOMAIN DECOMPOSITION THEORY IN DETAIL
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096468" target="_blank" >RIV/61989100:27240/15:86096468 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/15:86096468
Result on the web
<a href="http://dx.doi.org/10.1007/s10492-015-0095-5" target="_blank" >http://dx.doi.org/10.1007/s10492-015-0095-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10492-015-0095-5" target="_blank" >10.1007/s10492-015-0095-5</a>
Alternative languages
Result language
angličtina
Original language name
2-DIMENSIONAL PRIMAL DOMAIN DECOMPOSITION THEORY IN DETAIL
Original language description
We give details of the theory of primal domain decomposition (DD) methods for a 2-dimensional second order elliptic equation with homogeneous Dirichlet boundary conditions and jumping coefficients. The problem is discretized by the finite element method.The computational domain is decomposed into triangular subdomains that align with the coefficients jumps. We prove that the condition number of the vertex-based DD preconditioner is O((1 + log(H/h))(2)), independently of the coefficient jumps, where H and h denote the discretization parameters of the coarse and fine triangulations, respectively. Although this preconditioner and its analysis date back to the pioneering work J.H.Bramble, J. E.Pasciak, A.H. Schatz (1986), and it was revisited and extendedby many authors including M.Dryja, O.B.Widlund (1990) and A.Toselli, O.B.Widlund (2005), the theory is hard to understand and some details, to our best knowledge, have never been published. In this paper we present all the proofs in deta
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Volume of the periodical
60
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
19
Pages from-to
265-283
UT code for WoS article
000361346700003
EID of the result in the Scopus database
2-s2.0-84941953368