An Assistive Object Recognition System for Enhancing Seniors Quality of Life
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096541" target="_blank" >RIV/61989100:27240/15:86096541 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.procs.2015.09.013" target="_blank" >http://dx.doi.org/10.1016/j.procs.2015.09.013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2015.09.013" target="_blank" >10.1016/j.procs.2015.09.013</a>
Alternative languages
Result language
angličtina
Original language name
An Assistive Object Recognition System for Enhancing Seniors Quality of Life
Original language description
This paper presents an indoor object recognition system based on the histogram of oriented gradient and Machine Learning (ML) algorithms; such as Support Vector Machines (SVMs), Random Forests (RF) and Linear Discriminant Analysis (LDA) algorithms, for classifying different indoor objects to improve quality of elderly people's life. The proposed approach consists of three phases; namely segmentation, feature extraction, and classification phases. Datasets used for these experiments, are totally consisted of 347 images with different eight indoor objects used for both training and testing datasets. Training dataset is divided into eight classes representing the different eight indoor objects. Experimental results showed that RF classification algorithmoutperformed both SVMs and LDA algorithms, where RF achieved 80.12%, SVMs and LDA achieved 77.81% and 78.76% respectively. (C) 2015 The Authors.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Procedia Computer Science. Volume 65
ISBN
—
ISSN
1877-0509
e-ISSN
—
Number of pages
10
Pages from-to
691-700
Publisher name
Elsevier
Place of publication
Amsterdam
Event location
Praha
Event date
Apr 20, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—