All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Diffusion-based similarity for image analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096744" target="_blank" >RIV/61989100:27240/15:86096744 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/content/pdf/10.1007%2F978-3-319-27677-9_7.pdf" target="_blank" >http://link.springer.com/content/pdf/10.1007%2F978-3-319-27677-9_7.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-27677-9_7" target="_blank" >10.1007/978-3-319-27677-9_7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Diffusion-based similarity for image analysis

  • Original language description

    Measuring the distances is a key problem in many imageanalysis algorithms. This is especially true for image segmentation. It provides a basis for the decision whether two image points belong to a single or to two different image segments. Many algorithms use the Euclidean distance, which may not be the right choice. The geodesic distance or the k shortest paths measure the distance along the surface that is defined by the image function. The diffusion distance seems to provide better properties since all the paths are taken into account. In this paper, we show that the diffusion distance has the properties that make it difficult to use in some image processing algorithms, mainly in image segmentation, which extends the recent observations of some other authors. We propose a new measure called normalised diffusion cosine similarity that overcomes some problems of diffusion distance. Lastly, we present the necessary theory and the experimental results.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science. Volume 9493

  • ISBN

    978-3-319-27676-2

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    18

  • Pages from-to

    107-123

  • Publisher name

    Springer Verlag

  • Place of publication

    London

  • Event location

    Lisabon

  • Event date

    Jan 10, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article