Diffusion-based similarity for image analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096744" target="_blank" >RIV/61989100:27240/15:86096744 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/content/pdf/10.1007%2F978-3-319-27677-9_7.pdf" target="_blank" >http://link.springer.com/content/pdf/10.1007%2F978-3-319-27677-9_7.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-27677-9_7" target="_blank" >10.1007/978-3-319-27677-9_7</a>
Alternative languages
Result language
angličtina
Original language name
Diffusion-based similarity for image analysis
Original language description
Measuring the distances is a key problem in many imageanalysis algorithms. This is especially true for image segmentation. It provides a basis for the decision whether two image points belong to a single or to two different image segments. Many algorithms use the Euclidean distance, which may not be the right choice. The geodesic distance or the k shortest paths measure the distance along the surface that is defined by the image function. The diffusion distance seems to provide better properties since all the paths are taken into account. In this paper, we show that the diffusion distance has the properties that make it difficult to use in some image processing algorithms, mainly in image segmentation, which extends the recent observations of some other authors. We propose a new measure called normalised diffusion cosine similarity that overcomes some problems of diffusion distance. Lastly, we present the necessary theory and the experimental results.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science. Volume 9493
ISBN
978-3-319-27676-2
ISSN
0302-9743
e-ISSN
—
Number of pages
18
Pages from-to
107-123
Publisher name
Springer Verlag
Place of publication
London
Event location
Lisabon
Event date
Jan 10, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—