All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sensitivity analysis of echo state networks for forecasting pseudo-periodic time series

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86099103" target="_blank" >RIV/61989100:27240/15:86099103 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/15:86099103

  • Result on the web

    <a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7492768" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7492768</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SOCPAR.2015.7492768" target="_blank" >10.1109/SOCPAR.2015.7492768</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sensitivity analysis of echo state networks for forecasting pseudo-periodic time series

  • Original language description

    This paper presents an analysis of the impact of the parameters of an Echo State Network (ESN) on its performance. In particular, we are interested on the parameter behaviour when the model is used for forecasting pseudo-periodic time series. According previous literature, the spectral radius of the hidden-hidden weight matrix of the ESN is a relevant parameter on the model performance. It impacts in the memory capacity and in the accuracy the model. Small values of the spectral radius are recommended for modelling time-series that require short fading memory. On the other hand, a matrix with spectral radius close to the unity is recommended for processing long memory time series. In this article, we figure out that the periodicity of the data is also an important factor to consider in the design of the ESN. Our results show that the better forecasting (according to two metrics of performance) occurs when the hidden-hidden weight matrix has spectral value equal to 0.5. For our analysis we use a public synthetic dataset that has a high periodicity. (C) 2015 IEEE.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2015 seventh International conference on soft computing and pattern recognition, SOCPAR 2015

  • ISBN

    978-1-4673-9360-7

  • ISSN

    2381-7542

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    328-333

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Fukuoka

  • Event date

    Nov 13, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000383091300057