All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolutionary Multi-objective Optimization for Evolving Hierarchical Fuzzy System

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86099114" target="_blank" >RIV/61989100:27240/15:86099114 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/15:86099114

  • Result on the web

    <a href="http://dx.doi.org/10.1109/CEC.2015.7257284" target="_blank" >http://dx.doi.org/10.1109/CEC.2015.7257284</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CEC.2015.7257284" target="_blank" >10.1109/CEC.2015.7257284</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolutionary Multi-objective Optimization for Evolving Hierarchical Fuzzy System

  • Original language description

    In this paper, a Multi-Objective Extended Genetic Programming (MOEGP) algorithm is developed to evolve the structure of the Hierarchical Flexible Beta Fuzzy System (HFBFS). The proposed algorithm allows finding the best representation of the hierarchical fuzzy system while trying to attain the desired balance of accuracy/interpretability. Furthermore, the free parameters (Beta membership functions and the consequent parts of rules) encoded in the best structure are tuned by applying the hybrid Bacterial Foraging Optimization Algorithm (the hybrid BFOA). The proposed methodology interleaves both MOEGP and the hybrid BFOA for the structure and the parameter optimization respectively until a satisfactory HFBFS is found. The performance of the approach is evaluated using several classification datasets with low and high input dimensions. Results prove the superiority of our method as compared with other existing works.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2015 IEEE Congress on Evolutionary Computation (CEC) : proceedings : May 25-28, 2015, Sendai, Japan

  • ISBN

    978-1-4799-7492-4

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    3163-3170

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Sendai

  • Event date

    May 25, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000380444803027