Numerical Weather Prediction Revisions using the Locally Trained Differential Polynomial Network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86095963" target="_blank" >RIV/61989100:27240/16:86095963 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27730/16:86095963
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0957417415006247" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0957417415006247</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2015.08.057" target="_blank" >10.1016/j.eswa.2015.08.057</a>
Alternative languages
Result language
angličtina
Original language name
Numerical Weather Prediction Revisions using the Locally Trained Differential Polynomial Network
Original language description
Meso-scale forecasts result from global numerical weather prediction models, which are based upon the differential equations for atmospheric dynamics that do not perfectly determine weather conditions near the ground. Statistical corrections can combine complex numerical models, based on the physics of the atmosphere to forecast the large-scale weather patterns, and regression in post-processing to clarify surface weather details according to local observations and climatological conditions. Neural networks trained with local relevant weather observations of fluctuant data relations in current conditions, entered by numerical model outcomes of the same data types, may revise its one target short-term prognosis (e.g. relative humidity or temperature) to stand for these methods. Polynomial neural networks can compose general partial differential equations, which allow model more complicated real system functions from discrete time-series observations than using standard soft-computing methods. This new neural network technique generates convergent series of substitution relative derivative terms, which combination sum can define and solve an unknown general partial differential equation, able to describe dynamic processes of the weather system in a local area, analogous to the differential equation systems of numerical models. The trained network model revises hourly-series of numerical prognosis of one target variable in sequence, applying the general differential equation solution of the correction multi-variable function to corresponding output variables of the 24-hour numerical forecast. The experimental results proved this polynomial network type can successfully revise some numerical weather prognoses after this manner.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
—
Volume of the periodical
44
Issue of the periodical within the volume
jaro
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
"265-274"
UT code for WoS article
—
EID of the result in the Scopus database
—