All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cattle Identification using Muzzle Images

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86096029" target="_blank" >RIV/61989100:27240/16:86096029 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007/978-3-319-29504-6_11" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-29504-6_11</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-29504-6_11" target="_blank" >10.1007/978-3-319-29504-6_11</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cattle Identification using Muzzle Images

  • Original language description

    The quality of animal identification system plays an important role for producers to make management decisions about their herd or individual animals. The animal identification is also important to animal traceability systems to ensure the integrity of the food chain. Usually, recordings and readings of tags-based systems are used to identify an animal, but only effective in eradication programs of national disease. Recently, animal biometric-based solutions, e.g. muzzle imaging system, offer an effective and secure, and rapid method of addressing the requirements of animal identification and traceability systems. In this paper, we present an identification system based on muzzle images. The identification process is based on Support Vector Machine (SVM), Linear Discriminant Analysis (LDA) and Tucker Tensor Decomposition. This selected classifiers we compared on the same dataset of muzzle images with different experiment settings. The results we evaluated by F-score. The best F-score result gives us the Tucker Tensor Decomposition. It achieved the median of F-score 0.750.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. Volume 427

  • ISBN

    978-3-319-29503-9

  • ISSN

    2194-5357

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    105-115

  • Publisher name

    Springer Verlag

  • Place of publication

    London

  • Event location

    Paříž

  • Event date

    Sep 9, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000371912400011