All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fuzzy c-means algorithm in automatic classification of EEG

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86098266" target="_blank" >RIV/61989100:27240/16:86098266 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-319-33609-1_13" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-33609-1_13</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-33609-1_13" target="_blank" >10.1007/978-3-319-33609-1_13</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fuzzy c-means algorithm in automatic classification of EEG

  • Original language description

    The electroencephalogram (EEG) provides markers of brain disturbances in the field of epilepsy. In short duration EEG data recordings, the epileptic graphoelements may not manifest. The visual analysis of lengthy signals is a tedious task. It is necessary to track the activity on the computer screen and to detect the epileptiform graphoelements and the other pathological activity. The automation of the process is suggested. The procedure is based on processing temporal profiles computed by means of multichannel adaptive segmentation and subsequent classification of detected signal graphoelements. The temporal profiles, function of the class membership in the course of time, reflect the dynamic EEG microstructure and may be used for visual indication of abnormal changes in the EEG using different colors. We will show that Fuzzy c-means (FCM) algorithm can be used for correct classification of epileptic pattern, creating homogeneous compact classes of significant EEG segments. (C) Springer International Publishing Switzerland 2016.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. Volume 450

  • ISBN

    978-3-319-33608-4

  • ISSN

    1615-3871

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    147-156

  • Publisher name

    Springer

  • Place of publication

    Basel

  • Event location

    Soči

  • Event date

    May 16, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article