A neural network model for road traffic flow estimation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099059" target="_blank" >RIV/61989100:27240/16:86099059 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/16:86099059
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-27400-3_27" target="_blank" >http://dx.doi.org/10.1007/978-3-319-27400-3_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-27400-3_27" target="_blank" >10.1007/978-3-319-27400-3_27</a>
Alternative languages
Result language
angličtina
Original language name
A neural network model for road traffic flow estimation
Original language description
Real-time road traffic state information can be used for traffic flow monitoring, incident detection and other related traffic management activities. Road traffic state estimation can be done using either data driven or model based or hybrid approaches. The data driven approach is preferable for real-time flow prediction but to get traffic data for performance evaluation, hybrid approach is recommended. In this paper, a neural network model is employed to estimate real-time traffic flow on urban road network. To model the traffic flow, the microscopic model Simulation of Urban Mobility (SUMO) is used. The evaluation of the model using both simulation data and real-world data indicated that the developed estimation model could help to generate reliable traffic state information on urban roads. (C) Springer International Publishing Switzerland 2016.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Intelligent Systems and Computing. Volume 419
ISBN
978-3-319-27399-0
ISSN
2194-5357
e-ISSN
—
Number of pages
10
Pages from-to
305-314
Publisher name
Springer Verlag
Place of publication
London
Event location
Pietermaritzburg
Event date
Dec 1, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—