Evolutionary algorithms for fast parallel classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099075" target="_blank" >RIV/61989100:27240/16:86099075 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/16:86099075
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-26227-7_62" target="_blank" >http://dx.doi.org/10.1007/978-3-319-26227-7_62</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-26227-7_62" target="_blank" >10.1007/978-3-319-26227-7_62</a>
Alternative languages
Result language
angličtina
Original language name
Evolutionary algorithms for fast parallel classification
Original language description
The classification tries to assign the best category to given unknown records based on previous observations. It is clear that with the growing amount of data, any classification algorithm can be very slow. The learning speed of many developed state-of-the-art algorithms like deep neural networks or support vector machines is very low. Evolutionary-based approaches in classification have the same problem.This paper describes five different evolutionary-based approaches that solve the classification problem and run in real time. This was achieved by using GPU parallelization. These classifiers are evaluated on two collections that contains millions of records. The proposed parallel approach is much faster and preserve the same precision as a serial version. (C) Springer International Publishing Switzerland 2016.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Intelligent Systems and Computing. Volume 403
ISBN
978-3-319-26225-3
ISSN
2194-5357
e-ISSN
—
Number of pages
12
Pages from-to
659-670
Publisher name
Springer Verlag
Place of publication
London
Event location
Wrocław
Event date
May 25, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—