All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Feature selection by principle component analysis for mining frequent association rules

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099081" target="_blank" >RIV/61989100:27240/16:86099081 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-33609-1_9" target="_blank" >http://dx.doi.org/10.1007/978-3-319-33609-1_9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-33609-1_9" target="_blank" >10.1007/978-3-319-33609-1_9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Feature selection by principle component analysis for mining frequent association rules

  • Original language description

    Data mining techniques have been increasingly studied. Extracting the association rules have been the focus of this studies. Recently research have focused on association rules to help uncover relationships between seemingly unrelated data in a relational database or other information repository. The large size of data makes the extraction of association rules hard task. In this paper, we propose a new method for dimension reduction and feature selection based on the Principal Component Analysis, then find the association rules by using the FP-Growth Algorithm. Experimental results reveals that the reduction technique can discover the same rules obtained by the original data. (C) Springer International Publishing Switzerland 2016.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. Volume 450

  • ISBN

    978-3-319-33608-4

  • ISSN

    1615-3871

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    99-109

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Soči

  • Event date

    May 16, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article