Soft granular computing based classification using hybrid fuzzy-KNN-SVM
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099105" target="_blank" >RIV/61989100:27240/16:86099105 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3233/IDT-150243" target="_blank" >http://dx.doi.org/10.3233/IDT-150243</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/IDT-150243" target="_blank" >10.3233/IDT-150243</a>
Alternative languages
Result language
angličtina
Original language name
Soft granular computing based classification using hybrid fuzzy-KNN-SVM
Original language description
This paper aims at providing the concept of information granulation in Granular computing based pattern classification that is used to deal with incomplete, unreliable, uncertain knowledge from the view of a dataset. Data Discretization provides us the granules which further can be used to classify the instances. We use Equal width and Equal frequency Discretization as unsupervised ones; Fayyad-Irani's Minimum description length and Kononenko's supervised discretization approaches along with Fuzzy logic, neural network, Support vector machine and their hybrids to develop an efficient granular information processing paradigm. The experimental results show the effectiveness of our approach. We use benchmark datasets in UCI Machine Learning Repository in order to verify the performance of granular computing based approach in comparison with other existing approaches. Finally, we perform statistical significance test for confirming validity of the results obtained. (C) 2016 IOS Press and the authors. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Intelligent Decision Technologies
ISSN
1872-4981
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
115-128
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84960844134