All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Soft granular computing based classification using hybrid fuzzy-KNN-SVM

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099105" target="_blank" >RIV/61989100:27240/16:86099105 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.3233/IDT-150243" target="_blank" >http://dx.doi.org/10.3233/IDT-150243</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3233/IDT-150243" target="_blank" >10.3233/IDT-150243</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Soft granular computing based classification using hybrid fuzzy-KNN-SVM

  • Original language description

    This paper aims at providing the concept of information granulation in Granular computing based pattern classification that is used to deal with incomplete, unreliable, uncertain knowledge from the view of a dataset. Data Discretization provides us the granules which further can be used to classify the instances. We use Equal width and Equal frequency Discretization as unsupervised ones; Fayyad-Irani's Minimum description length and Kononenko's supervised discretization approaches along with Fuzzy logic, neural network, Support vector machine and their hybrids to develop an efficient granular information processing paradigm. The experimental results show the effectiveness of our approach. We use benchmark datasets in UCI Machine Learning Repository in order to verify the performance of granular computing based approach in comparison with other existing approaches. Finally, we perform statistical significance test for confirming validity of the results obtained. (C) 2016 IOS Press and the authors. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Intelligent Decision Technologies

  • ISSN

    1872-4981

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    14

  • Pages from-to

    115-128

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-84960844134