All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hierarchical fast mean-shift segmentation in depth images

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86100011" target="_blank" >RIV/61989100:27240/16:86100011 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-319-48680-2_39" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-48680-2_39</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-48680-2_39" target="_blank" >10.1007/978-3-319-48680-2_39</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hierarchical fast mean-shift segmentation in depth images

  • Original language description

    Head position and head pose detection systems are very popular in recent times, especially with the rise of depth cameras like Microsoft Kinect and Intel RealSense. The goal is to recognize and segment a head in depth data. The systems could also detect the direction in which the head is pointing and we use these data to improve the gaze direction detection system and provide useful information to allow detectors to work properly. We present the Hierarchical Fast Blurring Mean Shift algorithm that is able to extract the data from depth images in real-time from above mentioned cameras. We also present some modifications for an effective reduction of the mean-shift dataset during the computation that allow us to increase the precision of the method. We use a hierarchical approach to reduce the dataset during the computation process and to improve the speed. (C) Springer International Publishing AG 2016.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 10016

  • ISBN

    978-3-319-48679-6

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    441-452

  • Publisher name

    Springer Verlag

  • Place of publication

    Cham

  • Event location

    Lecce

  • Event date

    Oct 24, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article