Left Subsectivity: How to Infer that a Round Peg is Round
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86100502" target="_blank" >RIV/61989100:27240/16:86100502 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1111/1746-8361.12159" target="_blank" >http://dx.doi.org/10.1111/1746-8361.12159</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/1746-8361.12159" target="_blank" >10.1111/1746-8361.12159</a>
Alternative languages
Result language
angličtina
Original language name
Left Subsectivity: How to Infer that a Round Peg is Round
Original language description
A property modifier is a function that takes a property to a property. For instance, the modifier short takes the property being a Dutchman to the property being a short Dutchman. Assume that being a round peg is a property obtained by means of modification, round being the modifier and being a peg the input property. Then how are we to infer that a round peg is a peg? By means of a rule of right subsectivity. How are we to infer that a round peg is round? By means of a rule of left subsectivity. This paper puts forward two rules (one general, the other special) of left subsectivity. The rules fill a gap in the prevalent theory of property modification. The paper also explains why the rules are philosophically relevant.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA15-13277S" target="_blank" >GA15-13277S: Hyperintensional logic for natural language analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Dialectica
ISSN
0012-2017
e-ISSN
—
Volume of the periodical
70
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
17
Pages from-to
531-547
UT code for WoS article
000392729500003
EID of the result in the Scopus database
2-s2.0-85010876740