Comparison of K-means clustering initialization approaches with brute-force initialization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10236274" target="_blank" >RIV/61989100:27240/17:10236274 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/17:10236274
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007%2F978-981-10-3409-1_7.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2F978-981-10-3409-1_7.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-10-3409-1_7" target="_blank" >10.1007/978-981-10-3409-1_7</a>
Alternative languages
Result language
angličtina
Original language name
Comparison of K-means clustering initialization approaches with brute-force initialization
Original language description
Data clustering is a basic data mining discipline that has been in center of interest of many research groups. This paper describes the formulation of the basic NP-hard optimization problem in data clustering which is approximated by many heuristic methods. The famous k-means clustering algorithm and its initialization is of a particular interest in this paper. A summary of the k-means variants and various initialization strategies is presented. Many initialization heuristics tend to search only through a fraction of the initial centroid space. The final clustering result is usually compared only to some other heuristic strategy. In this paper we compare the result to the solution provided by a brute-force experiment. Many instances of the k-means can be executed in parallel on the high performance computing infrastructure, which makes brute-force search for the best initial centroids possible. Solutions obtained by exact solvers [2, 11] of the clustering problem are used for verification of the brute-force approach. We present progress of the function optimization during the experiment for several benchmark data sets, including sparse document-term matrices. © Springer Nature Singapore Pte Ltd. 2017.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Intelligent Systems and Computing. Volume 567
ISBN
978-981-10-3408-4
ISSN
2194-5357
e-ISSN
neuvedeno
Number of pages
12
Pages from-to
103-114
Publisher name
Springer
Place of publication
Singapur
Event location
Kalkata
Event date
Aug 12, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—