All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparison of K-means clustering initialization approaches with brute-force initialization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10236274" target="_blank" >RIV/61989100:27240/17:10236274 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/17:10236274

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.1007%2F978-981-10-3409-1_7.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2F978-981-10-3409-1_7.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-10-3409-1_7" target="_blank" >10.1007/978-981-10-3409-1_7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparison of K-means clustering initialization approaches with brute-force initialization

  • Original language description

    Data clustering is a basic data mining discipline that has been in center of interest of many research groups. This paper describes the formulation of the basic NP-hard optimization problem in data clustering which is approximated by many heuristic methods. The famous k-means clustering algorithm and its initialization is of a particular interest in this paper. A summary of the k-means variants and various initialization strategies is presented. Many initialization heuristics tend to search only through a fraction of the initial centroid space. The final clustering result is usually compared only to some other heuristic strategy. In this paper we compare the result to the solution provided by a brute-force experiment. Many instances of the k-means can be executed in parallel on the high performance computing infrastructure, which makes brute-force search for the best initial centroids possible. Solutions obtained by exact solvers [2, 11] of the clustering problem are used for verification of the brute-force approach. We present progress of the function optimization during the experiment for several benchmark data sets, including sparse document-term matrices. © Springer Nature Singapore Pte Ltd. 2017.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. Volume 567

  • ISBN

    978-981-10-3408-4

  • ISSN

    2194-5357

  • e-ISSN

    neuvedeno

  • Number of pages

    12

  • Pages from-to

    103-114

  • Publisher name

    Springer

  • Place of publication

    Singapur

  • Event location

    Kalkata

  • Event date

    Aug 12, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article