Energy harvesting-based spectrum access with incremental cooperation, relay selection and hardware noises
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10236457" target="_blank" >RIV/61989100:27240/17:10236457 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/17:10236457
Result on the web
<a href="https://www.radioeng.cz/papers/2017-1.htm" target="_blank" >https://www.radioeng.cz/papers/2017-1.htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/re.2017.0240" target="_blank" >10.13164/re.2017.0240</a>
Alternative languages
Result language
angličtina
Original language name
Energy harvesting-based spectrum access with incremental cooperation, relay selection and hardware noises
Original language description
In this paper, we propose an energy harvesting (EH)-based spectrum access model in cognitive radio (CR) network. In the proposed scheme, one of available secondary transmitters (STs) helps a primary transmitter (PT) forward primary signals to a primary receiver (PR). Via the cooperation, the selected ST finds opportunities to access licensed bands to transmit secondary signals to its intended secondary receiver (SR). Secondary users are assumed to be mobile, hence, optimization of energy consumption for these users is interested. The EH STs have to harvest energy from the PT's radio-frequency (RF) signals to serve the PTPR communication as well as to transmit their signals. The proposed scheme employs incremental relaying technique in which the PR only requires the assistance from the STs when the transmission between PT and PR is not successful. Moreover, we also investigate impact of hardware impairments on performance of the primary and secondary networks. For performance evaluation, we derive exact and lower-bound expressions of outage probability (OP) over Rayleigh fading channel. Monte-Carlo simulations are performed to verify the theoretical results. The results present that the outage performance of both networks can be enhanced by increasing the number of the ST-SR pairs. In addition, the outage performance of both primary and secondary networks is severely degraded with the increasing of hardware impairment level. It is also shown that fraction of time used for EH and positions of the secondary users significantly impact on the system performance.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20203 - Telecommunications
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Radioengineering
ISSN
1210-2512
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
11
Pages from-to
240-250
UT code for WoS article
000399735900031
EID of the result in the Scopus database
2-s2.0-85018279933