On Büchi one-counter automata
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10237379" target="_blank" >RIV/61989100:27240/17:10237379 - isvavai.cz</a>
Result on the web
<a href="http://drops.dagstuhl.de/opus/volltexte/2017/7019/" target="_blank" >http://drops.dagstuhl.de/opus/volltexte/2017/7019/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2017.14" target="_blank" >10.4230/LIPIcs.STACS.2017.14</a>
Alternative languages
Result language
angličtina
Original language name
On Büchi one-counter automata
Original language description
Equivalence of deterministic pushdown automata is a famous problem in theoretical computer science whose decidability has been shown by Sénizergues. Our first result shows that decidability no longer holds when moving from finite words to infinite words. This solves an open problem that has recently been raised by Löding. In fact, we show that already the equivalence problem for deterministic Büchi one-counter automata is undecidable. Hence, the decidability border is rather tight when taking into account a recent result by Löding and Repke that equivalence of deterministic weak parity pushdown automata (a subclass of deterministic Büchi pushdown automata) is decidable. Another known result on finite words is that the universality problem for vector addition systems is decidable. We show undecidability when moving to infinite words. In fact, we prove that already the universality problem for nondeterministic Büchi one-counter nets (or equivalently vector addition systems with one unbounded dimension) is undecidable.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA15-13784S" target="_blank" >GA15-13784S: Computational complexity of selected verification problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Leibniz International Proceedings in Informatics, LIPIcs. Volume 66
ISBN
978-3-95977-028-6
ISSN
1868-8969
e-ISSN
neuvedeno
Number of pages
13
Pages from-to
1-13
Publisher name
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Place of publication
Wadern
Event location
Hannover
Event date
Mar 8, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—