Sensorless control of variable speed induction motor drive using RBF neural network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238428" target="_blank" >RIV/61989100:27240/17:10238428 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jal.2016.11.017" target="_blank" >http://dx.doi.org/10.1016/j.jal.2016.11.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jal.2016.11.017" target="_blank" >10.1016/j.jal.2016.11.017</a>
Alternative languages
Result language
angličtina
Original language name
Sensorless control of variable speed induction motor drive using RBF neural network
Original language description
High power of modern digital signal processors and their decreasing prices enable practical implementation of different speed estimators which are used in the sensorless control of AC drives. The paper describes application possibilities of artificial neural networks for the sensorless speed control of the A.C. induction motor drive. In the sensorless control structure of the A.C. drive, there is implemented the speed estimator which uses two different artificial neural networks for speed estimation. The first speed estimator uses a multilayer feedforward artificial neural network. Its properties are compared with the speed estimator using a radial basis function neural network. The sensorless A.C. drive was simulated in program Matlab-Simulink. The main goal of many simulations was finding suitable structure of the artificial neural network with required number of neuron units which will ensure good control characteristics and simultaneously will enable a practical implementation of the artificial neural network in the digital signal processor control system.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
<a href="/en/project/TE02000103" target="_blank" >TE02000103: Center for Intelligent Drives and Advanced Machine Control (CIDAM)</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Applied Logic
ISSN
1570-8683
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
November 2017
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
97-108
UT code for WoS article
000413130000010
EID of the result in the Scopus database
2-s2.0-85006991047