Optimal energy management of residential PV/HESS using evolutionary fuzzy control
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238698" target="_blank" >RIV/61989100:27240/17:10238698 - isvavai.cz</a>
Result on the web
<a href="http://ieeexplore.ieee.org/document/7969558/" target="_blank" >http://ieeexplore.ieee.org/document/7969558/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC.2017.7969558" target="_blank" >10.1109/CEC.2017.7969558</a>
Alternative languages
Result language
angličtina
Original language name
Optimal energy management of residential PV/HESS using evolutionary fuzzy control
Original language description
The adoption of residential photovoltaic power generators combined with energy storage system can reduce the energy dependency of individual households while alleviating the impact of intermittent solar energy on the electric power grid. However, to maximize the benefits, energy in such systems must be carefully managed. The first step towards development of such energy management system, described in our previous work, is determination of the optimal power flows that reflects the current and future solar energy availability and household load, as well as the state of the energy storage system. This paper builds on the optimal power flows to develop an advanced energy management system in form of a fuzzy rule base system. The time series of the optimal flows, determined using linear programming, are used to determine the parameters of a Takagi-Sugeno fuzzy controller through differential evolution. The resulting system can be implemented to control power flows in other systems composed of photovoltaic generation and energy storage. The results confirm the operational and economic benefits of using the optimal operational strategy, while allowing its in-depth analysis through the evolved fuzzy rule base. © 2017 IEEE.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GJ16-25694Y" target="_blank" >GJ16-25694Y: Multi-paradigm data mining algorithms based on information retrieval, fuzzy, and bio-inspired methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings
ISBN
978-1-5090-4601-0
ISSN
—
e-ISSN
neuvedeno
Number of pages
8
Pages from-to
2094-2101
Publisher name
IEEE
Place of publication
Piscataway
Event location
San Sebastián
Event date
Jun 5, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000426929700271