All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Geometrical and topological approaches to Big Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238730" target="_blank" >RIV/61989100:27240/17:10238730 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0167739X16301856?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167739X16301856?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.future.2016.06.005" target="_blank" >10.1016/j.future.2016.06.005</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Geometrical and topological approaches to Big Data

  • Original language description

    Modern data science uses topological methods to find the structural features of data sets before further supervised or unsupervised analysis. Geometry and topology are very natural tools for analysing massive amounts of data since geometry can be regarded as the study of distance functions. Mathematical formalism, which has been developed for incorporating geometric and topological techniques, deals with point cloud data sets, i.e. finite sets of points. It then adapts tools from the various branches of geometry and topology for the study of point cloud data sets. The point clouds are finite samples taken from a geometric object, perhaps with noise. Topology provides a formal language for qualitative mathematics, whereas geometry is mainly quantitative. Thus, in topology, we study the relationships of proximity or nearness, without using distances. A map between topological spaces is called continuous if it preserves the nearness structures. Geometrical and topological methods are tools allowing us to analyse highly complex data. These methods create a summary or compressed representation of all of the data features to help to rapidly uncover particular patterns and relationships in data. The idea of constructing summaries of entire domains of attributes involves understanding the relationship between topological and geometric objects constructed from data using various features. A common thread in various approaches for noise removal, model reduction, feasibility reconstruction, and blind source separation, is to replace the original data with a lower dimensional approximate representation obtained via a matrix or multi-directional array factorization or decomposition. Besides those transformations, a significant challenge of feature summarization or subset selection methods for Big Data will be considered by focusing on scalable feature selection. Lower dimensional approximate representation is used for Big Data visualization. The cross-field between topology and Big Data will bring huge opportunities, as well as challenges, to Big Data communities. This survey aims at bringing together state-of-the-art research results on geometrical and topological methods for Big Data.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GJ16-25694Y" target="_blank" >GJ16-25694Y: Multi-paradigm data mining algorithms based on information retrieval, fuzzy, and bio-inspired methods</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Future generation computer systems

  • ISSN

    0167-739X

  • e-ISSN

  • Volume of the periodical

    67

  • Issue of the periodical within the volume

    February

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    286-296

  • UT code for WoS article

    000389555700023

  • EID of the result in the Scopus database

    2-s2.0-84979556390