All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Karhunen-Loéve decomposition of isotropic Gaussian random fields using a tensor approximation of autocovariance kernel

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10239977" target="_blank" >RIV/61989100:27240/18:10239977 - isvavai.cz</a>

  • Alternative codes found

    RIV/68145535:_____/18:00495896 RIV/61989100:27740/18:10239977

  • Result on the web

    <a href="http://doi.org/10.1007/978-3-319-97136-0_14" target="_blank" >http://doi.org/10.1007/978-3-319-97136-0_14</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-97136-0_14" target="_blank" >10.1007/978-3-319-97136-0_14</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Karhunen-Loéve decomposition of isotropic Gaussian random fields using a tensor approximation of autocovariance kernel

  • Original language description

    Applications of random fields typically require a generation of random samples or their decomposition. In this contribution, we focus on the decomposition of the isotropic Gaussian random fields on a two or three-dimensional domain. The preferred tool for the decomposition of the random field is the Karhunen-Loéve expansion. The Karhunen-Loéve expansion can be approximated using the Galerkin method, where we encounter two main problems. First, the calculation of each element of the Galerkin matrix is expensive because it requires an accurate evaluation of multi-dimensional integral. The second problem consists of the memory requirements, originating from the density of the matrix. We propose a method that overcomes both problems. We use a tensor-structured approximation of the autocovariance kernel, which allows its separable representation. This leads to the representation of the matrix as a sum of Kronecker products of matrices related to the one-dimensional problem, which significantly reduces the storage requirements. Moreover, this representation dramatically reduces the computation cost, as we only calculate two-dimensional integrals. (C) Springer International Publishing AG, part of Springer Nature 2018.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 11087

  • ISBN

    978-3-319-97135-3

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    15

  • Pages from-to

    188-202

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Karolinka

  • Event date

    May 22, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article