The projected Barzilai-Borwein method with fall-back for strictly convex QCQP problems with separable constraints
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10240009" target="_blank" >RIV/61989100:27240/18:10240009 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/18:10240009
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0378475417303415" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0378475417303415</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matcom.2017.10.003" target="_blank" >10.1016/j.matcom.2017.10.003</a>
Alternative languages
Result language
angličtina
Original language name
The projected Barzilai-Borwein method with fall-back for strictly convex QCQP problems with separable constraints
Original language description
A variant of the projected Barzilai-Borwein method for solving the strictly convex QCQP problems with separable constraints is presented. The convergence is enforced by a combination of the fall-back strategy and the fixed step- length gradient projection. Using the recent results on the decrease of the convex quadratic function along the projected- gradient path, we prove that the algorithm enjoys the R-linear convergence. The algorithm is plugged into our scalable TFETI based domain decomposition algorithm for the solution of contact problems and its performance is demonstrated on the solution of contact problems, including a frictionless problem and the problems with the isotropic and orthotropic Tresca friction.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics and computers in simulation
ISSN
0378-4754
e-ISSN
—
Volume of the periodical
145
Issue of the periodical within the volume
March 2018
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
79-89
UT code for WoS article
000416128600007
EID of the result in the Scopus database
—