Pupil localization using geodesic distance
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241535" target="_blank" >RIV/61989100:27240/18:10241535 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-030-03801-4_38" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-03801-4_38</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-03801-4_38" target="_blank" >10.1007/978-3-030-03801-4_38</a>
Alternative languages
Result language
angličtina
Original language name
Pupil localization using geodesic distance
Original language description
The main contributions of the presented paper can be summarized as follows. Firstly, we introduce a unique and robust dataset of human eyes that can be used in many detection and recognition scenarios, especially for the recognition of driver drowsiness, gaze direction, or eye-blinking frequency. The dataset consists of approximately 85,000 different eye regions that were captured using various near-infrared cameras, various resolutions, and various lighting conditions. The images are annotated into many categories. Secondly, we present a new method for pupil localization that is based on the geodesic distance. The presented experiments show that the proposed method outperforms the state-of-the-art methods in this area. (C) Springer Nature Switzerland AG 2018.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 11241
ISBN
978-3-030-03800-7
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
12
Pages from-to
433-444
Publisher name
Springer
Place of publication
Cham
Event location
Las Vegas
Event date
Nov 19, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—