All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Non-invasive fetal ECG extraction from maternal abdominal ECG using LMS and RLS adaptive algorithms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241640" target="_blank" >RIV/61989100:27240/18:10241640 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-319-60834-1_27" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-60834-1_27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-60834-1_27" target="_blank" >10.1007/978-3-319-60834-1_27</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Non-invasive fetal ECG extraction from maternal abdominal ECG using LMS and RLS adaptive algorithms

  • Original language description

    This paper focuses on the fetal electrocardiogram (fECG) recorded transabdominally. This method could become very efficient and essential tool in monitoring and diagnosing endangered fetuses during the pregnancy and the delivery. The greatest challenge connected with this kind of monitoring is the amount of noise that is recorded within the desired signal. Thus, the extraction of the fECG from the composite abdominal signal is discussed. The authors&apos; aim is to introduce the most suitable representatives from the Least Mean Squares (LMS) and Recursive Least Square (RLS) based Finite Impulse Response (FIR) Adaptive Filters. Experimental results suggest the ideal combination of the chosen filters&apos; settings (Step size, filter length, forgetting factor etc.). Results of fECG extraction are evaluated by the objective parameters, namely Percentage Root-Mean-Square Difference (PRD), input and output Signal to Noise Ratios (SNRs), and Root Mean Square Error (RMSE). (C) 2018, Springer International Publishing AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in intelligent systems and computing. Volume 565

  • ISBN

    978-3-319-60833-4

  • ISSN

    2194-5357

  • e-ISSN

    neuvedeno

  • Number of pages

    14

  • Pages from-to

    258-271

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Marrákeš

  • Event date

    Nov 21, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article