All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Image Reconstruction for Electrical Impedance Tomography: Experimental Comparison of Radial Basis Neural Network and Gauss - Newton Method

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241778" target="_blank" >RIV/61989100:27240/18:10241778 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S2405896318308589" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405896318308589</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ifacol.2018.07.114" target="_blank" >10.1016/j.ifacol.2018.07.114</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Image Reconstruction for Electrical Impedance Tomography: Experimental Comparison of Radial Basis Neural Network and Gauss - Newton Method

  • Original language description

    Electrical impedance tomography (EIT) is an intensively researched noninvasive diagnostic method for medical use, that can help to improve the lung diagnostics, artificial lung ventilation and prevent lung injuries. Further improvements of reconstruction algorithms and measurement devices are essential to widen the use of EIT as a lung diagnostic method. To test potential of Radial Basis Neural Networks (RBNN) and Hopfield Neural Networks (HNN) for image reconstruction experiment is carried. Said neural networks are compared with Gauss - Newton (GN) algorithm. Results of the experiment show higher reconstruction accuracy with RBNN and HNN over GN algorithm. (C) 2018

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Research Centre of Advanced Mechatronic Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IFAC-PapersOnLine. Volume 51

  • ISSN

    2405-8963

  • e-ISSN

  • Volume of the periodical

    51

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    6

  • Pages from-to

    438-443

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85052849489