All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A two-stage feature extraction approach for ECG signals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241895" target="_blank" >RIV/61989100:27240/18:10241895 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-60834-1_30" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-60834-1_30</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-60834-1_30" target="_blank" >10.1007/978-3-319-60834-1_30</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A two-stage feature extraction approach for ECG signals

  • Original language description

    This paper investigate various techniques of extracting features from the electrocardiogram (ECG) signal in order to analyze the ECG signals to detect the heart disease. Feature extraction, is a one of the widespread process of decompose the ECG data. This paper introduce a two-stage feature extraction approach to extract features from ECG signals for different types of arrhythmias. Firstly, Modified Pan-Tomkins Algorithm (MPTA) is implemented to remove noise and extract nine features. Then the proposed Improved Feature Extraction Algorithm (IFEA) is applied to extract additionally ten different features from the ECG signal. The MIT-BIH arrhythmia database have been used to test the proposed approach. It is obvious from the results that the proposed approach shows a high classification in terms of the following four statistical measures: Accuracy (Ac) 98.37%, Recall 48.29%, Precision 43.91%, F Measure 45.31%, and Specificity (Sp) 93.30%, respectively. (C) 2018, Springer International Publishing AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in intelligent systems and computing. Volume 565

  • ISBN

    978-3-319-60833-4

  • ISSN

    2194-5357

  • e-ISSN

    neuvedeno

  • Number of pages

    12

  • Pages from-to

    299-310

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Marrákeš

  • Event date

    Nov 21, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article