Comparison of Different Electrocardiography with Vectorcardiography Transformations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10242459" target="_blank" >RIV/61989100:27240/19:10242459 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1424-8220/19/14/3072" target="_blank" >https://www.mdpi.com/1424-8220/19/14/3072</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s19143072" target="_blank" >10.3390/s19143072</a>
Alternative languages
Result language
angličtina
Original language name
Comparison of Different Electrocardiography with Vectorcardiography Transformations
Original language description
This paper deals with transformations from electrocardiographic (ECG) to vectorcardiographic (VCG) leads. VCG provides better sensitivity, for example for the detection of myocardial infarction, ischemia, and hypertrophy. However, in clinical practice, measurement of VCG is not usually used because it requires additional electrodes placed on the patient's body. Instead, mathematical transformations are used for deriving VCG from 12-leads ECG. In this work, Kors quasi-orthogonal transformation, inverse Dower transformation, Kors regression transformation, and linear regression-based transformations for deriving P wave (PLSV) and QRS complex (QLSV) are implemented and compared. These transformation methods were not yet compared before, so we have selected them for this paper. Transformation methods were compared for the data from the Physikalisch-Technische Bundesanstalt (PTB) database and their accuracy was evaluated using a mean squared error (MSE) and a correlation coefficient (R) between the derived and directly measured Frank's leads. Based on the statistical analysis, Kors regression transformation was significantly more accurate for the derivation of the X and Y leads than the others. For the Z lead, there were no statistically significant differences in the medians between Kors regression transformation and the PLSV and QLSV methods. This paper thoroughly compared multiple VCG transformation methods to conventional VCG Frank's orthogonal lead system, used in clinical practice.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
<a href="/en/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Research Centre of Advanced Mechatronic Systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SENSORS
ISSN
1424-8220
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
14
Country of publishing house
CH - SWITZERLAND
Number of pages
19
Pages from-to
—
UT code for WoS article
000479160300040
EID of the result in the Scopus database
—