All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Community detection in online social network using graph embedding and hierarchical clustering

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10244588" target="_blank" >RIV/61989100:27240/19:10244588 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-01818-4_26" target="_blank" >http://dx.doi.org/10.1007/978-3-030-01818-4_26</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-01818-4_26" target="_blank" >10.1007/978-3-030-01818-4_26</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Community detection in online social network using graph embedding and hierarchical clustering

  • Original language description

    The community detection plays an important role in social network analysis. It can be used to find users that behave in a similar manner, detect groups of interests, cluster users in e-commerce application such as their taste or shopping habits, etc. In this paper, we proposed an algorithm to detect the community in online social networks. Our algorithm represents the nodes and the relationships in the social networks using a vector, agglomerative clustering (the most famous clustering algorithm) will cluster those vectors to figure out the communities. The experimental results show that our algorithm performs better traditional agglomerative clustering because of the ability to detect the community which has better modularity value. (C) Springer Nature Switzerland AG 2019.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. Volume 874

  • ISBN

    978-3-030-01817-7

  • ISSN

    2194-5357

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    263-272

  • Publisher name

    Springer

  • Place of publication

    Basilej

  • Event location

    Soči

  • Event date

    Sep 17, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article