Novel quantum inspired approaches for automatic clustering of gray level images using Particle Swarm Optimization, Spider Monkey Optimization and Ageist Spider Monkey Optimization algorithms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10243745" target="_blank" >RIV/61989100:27240/20:10243745 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S1568494619308221?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494619308221?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2019.106040" target="_blank" >10.1016/j.asoc.2019.106040</a>
Alternative languages
Result language
angličtina
Original language name
Novel quantum inspired approaches for automatic clustering of gray level images using Particle Swarm Optimization, Spider Monkey Optimization and Ageist Spider Monkey Optimization algorithms
Original language description
This paper is intended to identify the optimal number of clusters automatically from an image dataset using some quantum behaved nature inspired meta-heuristic algorithms. Due to the lack of sufficient information, it is difficult to identify the appropriate number of clusters from a dataset, which has enthused the researchers to solve the problem of automatic clustering and to open up a new era of cluster analysis with the help of several natures inspired meta-heuristic algorithms. In this paper, three quantum inspired meta-heuristic techniques, viz., Quantum Inspired Particle Swarm Optimization (QIPSO), Quantum Inspired Spider Monkey Optimization (QISMO) and Quantum Inspired Ageist Spider Monkey Optimization (QIASMO), have been proposed. A comparison has been outlined between the quantum inspired algorithms with their corresponding classical counterparts. The efficiency of the quantum inspired algorithms has been established over their corresponding classical counterparts with regards to fitness, mean, standard deviation, standard errors of fitness, convergence curves (for benchmarked mathematical functions) and computational time. Finally, the results of two statistical superiority tests, viz., t- test and Friedman test have been provided to prove the superiority of the proposed methods. The superiority of the proposed methods has been established on five publicly available real life image datasets, five Berkeley image datasets of different dimensions and four benchmark mathematical functions both visually and quantitatively. (C) 2019 Elsevier B.V.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_027%2F0008463" target="_blank" >EF16_027/0008463: Science without borders</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Soft Computing
ISSN
1568-4946
e-ISSN
—
Volume of the periodical
88
Issue of the periodical within the volume
March
Country of publishing house
US - UNITED STATES
Number of pages
29
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85077094785