All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

High specific activity of radium isotopes in baryte from the Czech part of the Upper Silesian Basin - An example of spontaneous mine water treatment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10243768" target="_blank" >RIV/61989100:27240/20:10243768 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27350/20:10243768 RIV/61989100:27730/20:10243768

  • Result on the web

    <a href="https://www.mdpi.com/2075-163X/10/2/103" target="_blank" >https://www.mdpi.com/2075-163X/10/2/103</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/min10020103" target="_blank" >10.3390/min10020103</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    High specific activity of radium isotopes in baryte from the Czech part of the Upper Silesian Basin - An example of spontaneous mine water treatment

  • Original language description

    Radium-bearing barytes (radiobarytes) have been known since the beginning of the 20th century. They are mainly found as precipitates of low-temperature hydrothermal solutions. In anthropogenic environments, they frequently occur as crusts on oil industry equipment used for borehole extraction, in leachates from uranium mill tailings, and as a by-product of phosphoric acid manufacturing. Recently, we recognized Ra-rich baryte as a precipitate in the water drainage system of a bituminous coal mine in the Czech part of the Upper Silesian Basin. The precipitate is a relatively pure baryte, with the empirical formula (Ba0.934Sr0.058Ca0.051Mg0.003)Σ1.046S0.985O4.000. The mean specific activity of 226Ra was investigated by the two-sample method and it equals 39.62(22) Bq/g, a level that exceeds known natural occurrences. The values for 228Ra and 224Ra are 23.39(26) Bq/g and 11.03(25) Bq/g. The radium content in the baryte is 1.071 ng/g. It is clear that the Ra-rich baryte results from the mixing of two different mine waters-brines rich in Ba, Sr, and isotopes 226Ra and 228Ra and waters that are affected by sulfide weathering in mine works. When this mixing occurs in surface watercourses, it could present a serious problem due to the half-life of 226Ra, which is 1600 years. If such mixing spontaneously happens in a mine, then the environmental risks will be much lower and will be, to a great, extent eliminated after the closure of the mine.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10504 - Mineralogy

Result continuities

  • Project

    <a href="/en/project/LTC17051" target="_blank" >LTC17051: Mining the European Anthroposphere</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Minerals

  • ISSN

    2075-163X

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    000522452900018

  • EID of the result in the Scopus database

    2-s2.0-85078852246