All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The use of radial basis function surrogate models for sampling process acceleration in bayesian inversion

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10243885" target="_blank" >RIV/61989100:27240/20:10243885 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-14907-9_23" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-14907-9_23</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-14907-9_23" target="_blank" >10.1007/978-3-030-14907-9_23</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The use of radial basis function surrogate models for sampling process acceleration in bayesian inversion

  • Original language description

    The Bayesian approach provides a natural way of solving engineering inverse problems including uncertainties. The objective is to describe unknown parameters of a mathematical model based on noisy measurements. Using the Bayesian approach, the vector of unknown parameters is described by its joint probability distribution, i.e. the posterior distribution. To provide samples, Markov Chain Monte Carlo methods can be used. Their disadvantage lies in the need of repeated evaluations of the mathematical model that are computationally expensive in the case of practical problems. This paper focuses on the reduction of the number of these evaluations. Specifically, it explores possibilities of the use of radial basis function surrogate models in sampling methods based on the Metropolis-Hastings algorithm. Furthermore, updates of the surrogate model during the sampling process are suggested. The procedure of surrogate model updates and its integration into the sampling algorithm is implemented and supported by numerical experiments. (C) Springer Nature Switzerland AG 2020.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Electrical Engineering. Volume 554

  • ISBN

    978-3-030-14906-2

  • ISSN

    1876-1100

  • e-ISSN

    1876-1119

  • Number of pages

    11

  • Pages from-to

    228-238

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Ostrava

  • Event date

    Sep 11, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article