Hybrid Methods Based on Empirical Mode Decomposition for Non-Invasive Fetal Heart Rate Monitoring
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10245420" target="_blank" >RIV/61989100:27240/20:10245420 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/9034095" target="_blank" >https://ieeexplore.ieee.org/document/9034095</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2020.2980254" target="_blank" >10.1109/ACCESS.2020.2980254</a>
Alternative languages
Result language
angličtina
Original language name
Hybrid Methods Based on Empirical Mode Decomposition for Non-Invasive Fetal Heart Rate Monitoring
Original language description
This study focuses on fetal electrocardiogram (fECG) processing using hybrid methods that combine two or more individual methods. Combinations of independent component analysis (ICA), wavelet transform (WT), recursive least squares (RLS), and empirical mode decomposition (EMD) were used to create the individual hybrid methods. Following four hybrid methods were compared and evaluated in this study: ICA-EMD, ICA-EMD-WT, EMD-WT, and ICA-RLS-EMD. The methods were tested on two databases, the ADFECGDB database and the PhysioNet Challenge 2013 database. Extraction evaluation is based on fetal heart rate (fHR) determination. Statistical evaluation is based on determination of correct detection (ACC), sensitivity (Se), positive predictive value (PPV), and harmonic mean between Se and PPV (F1). In this study, the best results were achieved by means of the ICA-RLS-EMD hybrid method, which achieved accuracy (ACC) > 80% at 9 out of 12 recordings when tested on the ADFECGDB database, reaching an average value of ACC > 84%, Se > 87%, PPV > 92%, and F1 > 90%. When tested on the Physionet Challenge 2013 database, ACC > 80% was achieved at 12 out of 25 recordings with an average value of ACC > 64%, Se > 69%, PPV > 79%, and F1 > 72%. (C) 2013 IEEE.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
<a href="/en/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Research Centre of Advanced Mechatronic Systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Access
ISSN
2169-3536
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
51200-51218
UT code for WoS article
000524748500003
EID of the result in the Scopus database
2-s2.0-85082508957