High-dimensional data classification model based on random projection and Bagging-support vector machine
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246215" target="_blank" >RIV/61989100:27240/20:10246215 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.6095" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.6095</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/cpe.6095" target="_blank" >10.1002/cpe.6095</a>
Alternative languages
Result language
angličtina
Original language name
High-dimensional data classification model based on random projection and Bagging-support vector machine
Original language description
Aiming at the long training time when classifying high-dimensional data, a parallel classification model is proposed based on random projection and Bagging-support vector machine (SVM) to process high-dimensional data. The model first uses random projection to project the input data into the low-dimensional space. Then, we used the Bagging method to construct multiple training data subsets and used SVM to train the training subset in parallel and generate several subclassifiers. Finally, various classifiers vote to determine the category of the test sample. The model has been verified using two standard datasets. The experimental results show that the model can significantly improve the training speed and classification performance of high-dimensional data with little accuracy loss. (C) 2020 John Wiley & Sons Ltd
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Concurrency Computation Practice and Experience
ISSN
1532-0626
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
—
UT code for WoS article
000591646500001
EID of the result in the Scopus database
2-s2.0-85096690830