All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Obstacle Avoidance for Drones Based on the Self-Organizing Migrating Algorithm

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10247261" target="_blank" >RIV/61989100:27240/20:10247261 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/20:10247261

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.1007%2F978-3-030-61401-0_35.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2F978-3-030-61401-0_35.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-61401-0_35" target="_blank" >10.1007/978-3-030-61401-0_35</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Obstacle Avoidance for Drones Based on the Self-Organizing Migrating Algorithm

  • Original language description

    The paper proposes a method for the drone to catch the given target and avoid detected obstacles in its path based on the self-organizing migrating algorithm. In particular, a two-component fitness function is proposed based on the principle that the closer the target, the lower the fitness value, and the closer the obstacle, the higher the fitness value. Self-organizing migrating algorithm, a swarm intelligence algorithm, is used to predict the next positions that the drone will move to. These positions both satisfy the requirement to avoid obstacles and shorten the distance to the target. A map of two drones, two corresponding targets and four static obstacles was modeled on Matlab. The simulation results verify the correctness and effectiveness of the proposed method. (C) 2020, Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 12415

  • ISBN

    978-3-030-61400-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    376-386

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Zakopané

  • Event date

    Oct 12, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article