Self-Tuning Observer for Sensor Fault-Tolerant Control of Induction Motor Drive
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10247562" target="_blank" >RIV/61989100:27240/21:10247562 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1996-1073/14/9/2564" target="_blank" >https://www.mdpi.com/1996-1073/14/9/2564</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/en14092564" target="_blank" >10.3390/en14092564</a>
Alternative languages
Result language
angličtina
Original language name
Self-Tuning Observer for Sensor Fault-Tolerant Control of Induction Motor Drive
Original language description
This paper introduces a new solution for the speed and current sensor fault-tolerant direct field-oriented control of induction motor drives. Two self-adjusting observers derived from a modified current-based model reference adaptive system (CB-MRAS) are presented. Finally, the recursive least squares method was used to estimate the parameters of the used observers. The method, in the proposed solution, provides a very fast and accurate finding of the observer parameters while maintaining relative simplicity and ease of implementation. The presented algorithm eliminates the CB-MRAS observer dependence on the induction motor parameters and also compensates for the inaccuracies in the evaluation of the stator voltage vector. The proposed fault-tolerant control offers the drive operation while either a speed sensor or one/two current sensors fault occurs. The drive still works with the direct field-oriented control even when no current sensors are healthy. The proposed scheme was simulated in the MATLAB/Simulink software environment. Then the algorithm was implemented in a floating-point digital signal controller (DSC) TMS320F28335 and tested on an induction motor drive prototype of rated power of 2.2 kW to validate the proposed schemes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
<a href="/en/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: A Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Energies
ISSN
1996-1073
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
9
Country of publishing house
CH - SWITZERLAND
Number of pages
16
Pages from-to
—
UT code for WoS article
000650141200001
EID of the result in the Scopus database
—