Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10248191" target="_blank" >RIV/61989100:27240/21:10248191 - isvavai.cz</a>
Result on the web
<a href="http://www.mdpi.com/1996-1073/14/22/7581" target="_blank" >http://www.mdpi.com/1996-1073/14/22/7581</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/en14227581" target="_blank" >10.3390/en14227581</a>
Alternative languages
Result language
angličtina
Original language name
Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation
Original language description
Forecasting Photovoltaic (PV) energy production, based on the last weather and power data only, can obtain acceptable prediction accuracy in short-time horizons. Numerical Weather Prediction (NWP) systems usually produce free forecasts of the local cloud amount each 6 h. These are considerably delayed by several hours and do not provide sufficient quality. A Differential Polynomial Neural Network (D-PNN) is a recent unconventional soft-computing technique that can model complex weather patterns. D-PNN expands the n-variable kth order Partial Differential Equation (PDE) into selected two-variable node PDEs of the first or second order. Their derivatives are easy to convert into the Laplace transforms and substitute using Operator Calculus (OC). D-PNN proves two-input nodes to insert their PDE components into its gradually expanded sum model. Its PDE representation allows for the variability and uncertainty of specific patterns in the surface layer. The proposed all-day single-model and intra-day several-step PV prediction schemes are compared and interpreted with differential and stochastic machine learning. The statistical models are evolved for the specific data time delay to predict the PV output in complete day sequences or specific hours. Spatial data from a larger territory and the initially recognized daily periods enable models to compute accurate predictions each day and compensate for unexpected pattern variations and different initial conditions. The optimal data samples, determined by the particular time shifts between the model inputs and output, are trained to predict the Clear Sky Index in the defined horizon.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Energies
ISSN
1996-1073
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
22
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
1-14
UT code for WoS article
000725498400001
EID of the result in the Scopus database
2-s2.0-85119328873