All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Performance Analysis of Iteratively Decoded Convergent Source Mapping with Sphere Packing-Assisted Differential Space-Time Spreading Technique for Efficient Video Transmission

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10248730" target="_blank" >RIV/61989100:27240/21:10248730 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.hindawi.com/journals/complexity/2021/5776480/" target="_blank" >https://www.hindawi.com/journals/complexity/2021/5776480/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1155/2021/5776480" target="_blank" >10.1155/2021/5776480</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Performance Analysis of Iteratively Decoded Convergent Source Mapping with Sphere Packing-Assisted Differential Space-Time Spreading Technique for Efficient Video Transmission

  • Original language description

    With the substantial growth in number of wireless devices, future communication demands overarching research to design high-throughput and efficient systems. We propose an intelligent Convergent Source Mapping (CSM) approach incorporating Differential Space-Time Spreading (DSTS) technique with Sphere Packing (SP) modulation. The crux of CSM process is assured convergence by attaining an infinitesimal Bit-Error Rate (BER). Data Partitioning (DP) H.264 video codec is deployed to gauge the performance of our intelligent and efficient system. For the purpose of efficient and higher data rates, we have incorporated compression efficient source encoding along with error resiliency and transmission robustness features. The proposed system follows the concept of iterations between the Soft-Bit Source-Decoder (SBSD) and Recursive Systematic Convolutional (RSC) decoder. Simulations of the DSTS-SP-assisted CSM system are presented for the correlated narrowband Rayleigh channel, using different CSM rates but constant overall bit-rate budget. The SP-assisted DSTS systems are mainly useful in decoding algorithms that operate without requiring Channel State Information (CSI). The effects of incorporating redundancy via different CSM schemes on the attainable performance and convergence of the proposed system are investigated using EXtrinsic Information Transfer (EXIT) charts. The effectiveness of the proposed system is demonstrated through IT++ based proof-of-concept simulations. The Peak Signal-to-Noise Ratio (PSNR) analysis shows that using Rate-2/6 CSM with minimum Hamming distance (dH,min) of 4 offers about 5 dB gain, compared to an identical overall system code rate but with Rate-2/3 CSM and dH,min of 2. Furthermore, for a consistent value of dH,min and overall rate, the Rate-2/3 CSM scheme beats the Rate-5/6 CSM by about 2 dB at the PSNR degradation point of 2 dB. Moreover, the proposed system with Rate-2/3 CSM scheme furnishes an Eb/N0 gain of 20 dB when compared with the uniform-rate benchmarker. Clearly, we can say that higher dH,min and lower CSM values are favourable for our proposed setup.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20200 - Electrical engineering, Electronic engineering, Information engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    COMPLEXITY

  • ISSN

    1076-2787

  • e-ISSN

  • Volume of the periodical

    2021

  • Issue of the periodical within the volume

    5776480

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    1-16

  • UT code for WoS article

    000741320400003

  • EID of the result in the Scopus database