Accelerated neural intrusion detection for wireless sensor networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10249608" target="_blank" >RIV/61989100:27240/21:10249608 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-030-57796-4_20" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-57796-4_20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-57796-4_20" target="_blank" >10.1007/978-3-030-57796-4_20</a>
Alternative languages
Result language
angličtina
Original language name
Accelerated neural intrusion detection for wireless sensor networks
Original language description
Wireless sensor networks (WSNs) form an important layer of technology used in smart cities, intelligent transportation systems, Industry, Energy, Agriculture 4.0, the Internet of Things, and, for example, fog and edge computing. Cybernetic security of such systems is a major issue and efficient methods to improve their security and reliability are sought. Intrusion detection systems (IDSs) automatically detect malicious network traffic, classify cybernetic attacks, and protect systems and their users. Neural networks are used by a variety of intrusion detection systems. Their efficient use in WSNs requires both learning and optimization and very efficient implementation of the detection. In this work, the acceleration of a neural intrusion detection model, developed specifically for wireless sensor networks, is proposed, studied, and evaluated. (C) Springer Nature Switzerland AG 2021.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: A Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Intelligent Systems and Computing. Volume 1263
ISBN
978-3-030-57795-7
ISSN
2194-5357
e-ISSN
2194-5365
Number of pages
12
Pages from-to
204-215
Publisher name
Springer
Place of publication
Cham
Event location
Victoria
Event date
Aug 31, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—