Novel Random Key Encoding Schemes for the Differential Evolution of Permutation Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10249025" target="_blank" >RIV/61989100:27240/22:10249025 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/9449662" target="_blank" >https://ieeexplore.ieee.org/document/9449662</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TEVC.2021.3087802" target="_blank" >10.1109/TEVC.2021.3087802</a>
Alternative languages
Result language
angličtina
Original language name
Novel Random Key Encoding Schemes for the Differential Evolution of Permutation Problems
Original language description
Differential evolution is a powerful nature-inspired real-parameter optimization algorithm that has been successfully used to solve a number of hard optimization problems. It has been used to tackle both continuous and discrete optimization problems. The application of a continuous method to discrete problems involves several challenges, including solution representation and search space-solution space mapping. In this work, we study random key encoding, a popular encoding scheme that is used to represent permutations in high-dimensional continuous spaces. We analyze the search space it constitutes, study its structure and properties, and introduce two novel modifications of the encoding. We investigate the proposed encoding strategies in the context of four variants of the differential evolution algorithm and demonstrate their usefulness for two widespread permutation problems: 1) the linear ordering problem and 2) the traveling salesman problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/LTAIN19176" target="_blank" >LTAIN19176: Metaheuristics Framework for Multi-objective Combinatorial Optimization Problems (META MO-COP)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Evolutionary Computation
ISSN
1089-778X
e-ISSN
1941-0026
Volume of the periodical
26
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
43-57
UT code for WoS article
000748370700008
EID of the result in the Scopus database
—